How to Encrypt Directories/Partitions with eCryptfs on Debian 8 (Jessie)

eCryptfs is a POSIX-compliant enterprise-class stacked cryptographic filesystem for Linux. You can use it to encrypt partitions and also directories that don't use a partition of their own, no matter the underlying filesystem, partition type, etc. This tutorial shows how to use eCryptfs to encrypt a directory on Debian Jessie.


1 Preliminary Note

In this tutorial, I will encrypt my home directory, /home/falko/, which is located on the / partition (i.e., /home/falko/ is an ordinary directory and does not use a partition of its own).


2 Installing eCryptfs

eCryptfs can easily be installed as follows:

apt-get -y install ecryptfs-utils


3 Encrypting a directory

I will now encrypt my home directory /home/falko/. As there are already (unencrypted) files in that directory, I must take a backup of them so that I can restore them to the then encrypted /home/falko/ directory later on (otherwise these filles cannot be accessed/read while the directory is encrypted):

cp -pfr /home/falko/ /tmp/

I can now encrypt the directory /home/falko/ by mounting it with the file system type ecryptfs:

mount -t ecryptfs /home/falko /home/falko

When you do this for the first time, you will have to answer a few questions:

[email protected]:/tmp# mount -t ecryptfs /home/falko /home/falko
Select key type to use for newly created files:
1) tspi
2) passphrase
Selection: <-- 2
Passphrase: <-- Enter a secure password
Select cipher:
1) aes: blocksize = 16; min keysize = 16; max keysize = 32
2) blowfish: blocksize = 8; min keysize = 16; max keysize = 56
3) des3_ede: blocksize = 8; min keysize = 24; max keysize = 24
4) twofish: blocksize = 16; min keysize = 16; max keysize = 32
5) cast6: blocksize = 16; min keysize = 16; max keysize = 32
6) cast5: blocksize = 8; min keysize = 5; max keysize = 16
Selection [aes]: <-- Press ENTER
Select key bytes:
1) 16
2) 32
3) 24
Selection [16]: <-- Press ENTER
Enable plaintext passthrough (y/n) [n]: <-- Press ENTER
Enable filename encryption (y/n) [n]: <-- Press ENTER
Attempting to mount with the following options:
WARNING: Based on the contents of [/root/.ecryptfs/sig-cache.txt],
it looks like you have never mounted with this key
before. This could mean that you have typed your
passphrase wrong.

Would you like to proceed with the mount (yes/no)? : <-- yes
Would you like to append sig [bd28c38da9fc938b] to
in order to avoid this warning in the future (yes/no)? : <-- yes
Successfully appended new sig to user sig cache file
Mounted eCryptfs
[email protected]:/home/administrator#

Take a look at the output of


and you should see that /home/falko/ is now encrypted:


Let's restore our backup to the now encrypted directory /home/falko/ and delete the backup afterwards:

cp -pfr /tmp/falko/ /home/
rm -fr /tmp/falko/

For testing purposes, let's copy some other file, e.g. /etc/hosts, to /home/falko/ to check if it really gets encrypted:

cp /etc/hosts /home/falko

While /home/falko/ is mounted with the ecryptfs file system type, it should be possible to read the contents of /home/falko/hosts:

cat /home/falko/hosts

Unencrypted file content

Now unmount /home/falko/...

umount /home/falko

... and try again to read /home/falko/hosts, and you should get some cryptic stuff:

cat /home/falko/hosts

Encrypted file content. 

4 How to automatically mount an encrypted partition at boot time

Of course, we don't want to mount /home/falko/ manually each time - it would be nicer if could be mounted automatically at boot time. To do this, we need a passphrase file, and for security reasons I want this passphrase file to be located on a USB key.

Plug in a USB key and run

fdisk -l

to find out its device name and file system type:

[email protected]:~# fdisk -l

Disk /dev/sda: 32.2 GB, 32212254720 bytes
255 heads, 63 sectors/track, 3916 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00035e35

   Device Boot      Start         End      Blocks   Id  System
/dev/sda1   *           1        3793    30461952   83  Linux
/dev/sda2            3793        3917      992257    5  Extended
/dev/sda5            3793        3917      992256   82  Linux swap / Solaris

Disk /dev/sdb: 8086 MB, 8086617600 bytes
255 heads, 63 sectors/track, 983 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000e439f

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1               1         983     7895916    b  W95 FAT32
[email protected]:~#

In my case, the device name is /dev/sdb1, and it uses an FAT32 file system.

Let's mount the USB key to /mnt/usb:

mkdir /mnt/usb
mount /dev/sdb1 /mnt/usb

Take a look at the output of


... and you should see that it got mounted with the file system type vfat (FAT32) - we will need this information later on for our /etc/fstab file:

[email protected]:~# mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
udev on /dev type devtmpfs (rw,relatime,size=10240k,nr_inodes=124251,mode=755)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)
tmpfs on /run type tmpfs (rw,nosuid,relatime,size=202132k,mode=755)
/dev/sda1 on / type ext4 (rw,relatime,errors=remount-ro,data=ordered)
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec,relatime,size=5120k)
tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)
cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/lib/systemd/systemd-cgroups-agent,name=systemd)
pstore on /sys/fs/pstore type pstore (rw,nosuid,nodev,noexec,relatime)
cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset)
cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpu,cpuacct)
cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices)
cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer)
cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup (rw,nosuid,nodev,noexec,relatime,net_cls,net_prio)
cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio)
cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event)
systemd-1 on /proc/sys/fs/binfmt_misc type autofs (rw,relatime,fd=23,pgrp=1,timeout=300,minproto=5,maxproto=5,direct)
mqueue on /dev/mqueue type mqueue (rw,relatime)
debugfs on /sys/kernel/debug type debugfs (rw,relatime)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime)
rpc_pipefs on /run/rpc_pipefs type rpc_pipefs (rw,relatime)
/dev/sdb1 on /mnt/usb type vfat (rw)
[email protected]:~#

Now take a look at the contents of /root/.ecryptfs/sig-cache.txt:

cat /root/.ecryptfs/sig-cache.txt


We need this signature for the file /root/.ecryptfsrc which we create as follows:

nano /root/.ecryptfsrc

Please make sure that you use the signature from the /root/.ecryptfs/sig-cache.txt file in the ecryptfs_sig line:


Now we create the passphrase file on our USB key:

nano /mnt/usb/passwd_file.txt


Make sure that you use the correct passphrase, i.e., the passphrase that you would use if you mounted the directory manually.

Next open /etc/fstab...

nano /etc/fstab

... and add the following two lines (make sure you use the correct file system type for your USB key - vfat in my case):

/dev/sdb1       /mnt/usb        vfat    ro      0 0
/home/falko /home/falko ecryptfs defaults 0 0

(It is important the the line for the USB key comes before the line for the encrypted partition because the USB key needs to be mounted before the encrypted partition can be mounted!)

Then reboot the system:


If everything goes fine, your encrypted partition should automatically be mounted after the reboot. However, it is possible that your system cannot mount your USB key during boot, which means your encrypted partition cannot be mounted either. If this happens, edit /etc/rc.local (this script is executed at the end of the boot process)...

nano /etc/rc.local

... and add the line /bin/mount -a before the exit 0 line:

#!/bin/sh -e
# rc.local
# This script is executed at the end of each multiuser runlevel.
# Make sure that the script will "exit 0" on success or any other
# value on error.
# In order to enable or disable this script just change the execution
# bits.
# By default this script does nothing.

/bin/mount -a
exit 0

This will (re-)mount all partitions (including your USB key and the encrypted partition) at the end of the boot process.


Share this page:

4 Comment(s)

Add comment


From: Oscar at: 2015-11-18 01:30:38

Great article! I must ask you, why did you choose 16 key bytes and not 24 or 32 key bytes?

From: John at: 2016-02-19 06:31:11

Very cool article! You could even write a udev rule to run a script when the device appears (filtered by device vendor/serial) to mount ecryptfs on-the-fly. You can then also write a similar udev rule to unmount ecryptfs when the usb key is removed, effectively giving you a hardware key that unencrypts your data only when the key is inserted! :)

From: Igor at: 2016-03-10 14:00:36



Thanks for the article, very helpful!

But one question – when I want to keep my folder encrypted and do NOT plugin a USB key during boot process I got error like:

Timeout wait for device dev-sda1.device

Dependency failed for /mnt/usd

Dependency failed for Local File System


End boot process ends with root account is looked, starting shell..

How to avoid it and keep folder encrypted and not affect booting process??




Thanks in advance


From: Victor Ebuwa at: 2016-07-12 13:08:39

Is there a typo here? You create a file ~/.ecryptfsrcand then say that you must ensure the signature is put in, but you don't say that it should be in the .ecryptfsrc file.

And then there is no mention that the original sig_cache.txt file should be removed.